Laser trapping in anisotropic fluids and polarization-controlled particle dynamics.

نویسندگان

  • Ivan I Smalyukh
  • Aliaksandr V Kachynski
  • Andrey N Kuzmin
  • Paras N Prasad
چکیده

Anisotropic fluids are widespread, ranging from liquid crystals used in displays to ordered states of a biological cell interior. Optical trapping is potentially a powerful technique in the fundamental studies and applications of anisotropic fluids. We demonstrate that laser beams in these fluids can generate anisotropic optical trapping forces, even for particles larger than the trapping beam wavelength. Immersed colloidal particles modify the fluid's ordered molecular structures and locally distort its optic axis. This distortion produces a refractive index "corona" around the particles that depends on their surface characteristics. The laser beam can trap such particles not only at their center but also at the high-index corona. Trapping forces in the beam's lateral plane mimic the corona and are polarization-controlled. This control allows the optical forces to be reversed and cause the particle to follow a prescribed trajectory. Anisotropic particle dynamics in the trap varies with laser power because of the anisotropy of both viscous drag and trapping forces. Using thermotropic liquid crystals and biological materials, we show that these phenomena are quite general for all anisotropic fluids and impinge broadly on their quantitative studies using laser tweezers. Potential applications include modeling thermodynamic systems with anisotropic polarization-controlled potential wells, producing optically tunable photonic crystals, and fabricating light-controlled nano- and micropumps.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optical manipulation of colloids and defect structures in anisotropic liquid crystal fluids

Optical trapping in anisotropic fluids such as liquid crystals shows inherently different behavior compared to that in isotropic media. Anisotropic optical and visco-elastic properties of these materials result in direction-sensitive and polarization-dependent interaction of the focused laser beam with colloidal inclusions, defects and structures of long-range molecular order, providing new mea...

متن کامل

Measurement of viscosity of lyotropic liquid crystals by means of rotating laser-trapped microparticles.

We describe a simple microrheology method to measure the viscosity coefficients of lyotropic liquid crystals. This approach is based on the use of a rotating laser-trapped optically anisotropic microsphere. In aligned liquid crystals that have negligible effect on trapping beam's polarization, the optical torque is transferred from circularly polarized laser trapping beam to the optically aniso...

متن کامل

Accurate Modeling of Laser-Plasma Accelerators with Particle-In-Cell Codes

Particle-In-Cell (PIC) codes are often used to study systems where the details of phasespace are important; for example, self trapping or optical injection in laser-plasma accelerators. Here we investigate the numerical heating and macro-particle trajectory errors in 2D PIC simulations of laser-plasma accelerators. The effects of grid resolution and laser polarization on the momentum spread and...

متن کامل

Calculation of radiation force and torque exerted on a uniaxial anisotropic sphere by an incident Gaussian beam with arbitrary propagation and polarization directions

On the basis of spherical vector wave functions and coordinate rotation theory, the expansion of the fields of an incident Gaussian beam with arbitrary propagation and polarization directions in terms of spherical vector wave functions is investigated, and beam shape coefficients are derived. Using the results of electromagnetic scattering by a uniaxial anisotropic sphere, the analytical expres...

متن کامل

Numerical study of thermal dynamics of gold nanoparticles in laser-induced hyperthermia therapy

Damage of the normal tissue is a serious concenrn in cancer treatment. Hyperthermia by laserhas been considered as a safe cancer treatments methods with lower harmful effects on normaltissues. Using nanoparticles in cancer treatment has improved laser therapy, which is based ona selective cell targeting method to localize cell damages. Metallic nanoparticles such as gold,silver, and copper have...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 103 48  شماره 

صفحات  -

تاریخ انتشار 2006